Lung Cancer Screening and Care and COVID-19

Expert Panel Recommendations

May 7, 2020
11:00 AM – 12:00 PM Eastern
Debra Dyer, MD, FACP
Chair, Department of Radiology and Director of Lung Cancer Screening Program, National Jewish Health.
Chair, American College of Radiology Lung Cancer Screening 2.0 Steering Committee
GO2 Foundation Scientific Leadership Board

Peter Mazzone, MD, MPH, FCCP
Director, Lung Cancer Program, Lung Cancer Screening Program, Cleveland Clinic
GO2 Foundation Scientific Leadership Board

Ella Kazerooni, MD, MS
Professor of Radiology & Internal Medicine, University of Michigan Medical Group
Chair, ACR Lung Cancer Screening Registry and Lung-RADS Committee
Chair, National Lung Cancer Screening Roundtable

Douglas Wood, MD, FACS, FRCSEd
Henry N. Harkins Professor and Chair, Department of Surgery, University of Washington
Chair, NCCN Lung Cancer Screening Panel
Vice-Chair, NCCN Non-Small Cell Lung Cancer Panel
Vice-Chair, National Lung Cancer Roundtable
GO2 Foundation Scientific Leadership Board
Lung Cancer Screening & COVID-19

Debra S. Dyer MD FACR
Chair, ACR LCS 2.0 Committee
Professor and Chair, Department of Radiology, National Jewish Health
Denver, CO
Screening rates have plummeted since Feb 2020

• EPIC White Paper report: 86-94% drop in Cervical, Breast and Colon CA screenings compared to 2017-2019

• Komodo Health report found 68% decrease in cervical cytology screening, 67% decrease in cholesterol/lipid panels, 65% decrease in Hemoglobin A1c tests

• Lung Cancer Screening CT rates have likely decreased similarly

• Not unexpected due to CDC advisement and ACR recommendation to postpone non-urgent imaging until “a later date.”
Concerns

• With postponement of screening, lung cancers could go undetected
• Postponement of lung cancer screening and recommended follow-up may result in diagnosis at later stages and increased lung cancer mortality
• Even when screening resumes, patients may be reluctant to come in for LCS CTs
ACR Statement on Safe Resumption of Routine Radiology Care During COVID-19

• In press, Davenport MS et al, JACR
• No single ideal approach
• Decisions will depend on local COVID-19 statistics, local government mandates, availability of PPE, health care workers and other resources
• Monitor local data and alter strategy if resurgence of COVID
ACR: Enact safety measures

- Screen for COVID symptoms during scheduling and on arrival
- Provide separate areas for non-COVID patients
- Implement universal masking of healthcare workers and patients
- Minimize time in waiting rooms
- Enable social distancing in waiting areas, hallways, work areas
ACR: Develop tiered plan for re-engagement

• Tier 1: Urgent and emergent care
• Tier 2: Non-urgent time-sensitive care
• Tier 3: Elective care and **Screening**
• Tier 4: Research
ACR: Addressing back-log

• Consider extended hours and to improve access and preserve social distancing

• Modify scheduling to space out LCS CT appointments
ACR: Manage fear

• Provide fact-based info to patients and staff
• Acknowledge that anxiety and stress are normal reactions to pandemic
• Advertise/emphasize infection control processes
CMS Recommendations on Re-opening

• In regions with low incidence rate of COVID-19, facilities can provide care to non-COVID patients
• Re-open based on adequacy of facilities, workforce, testing and supplies of PPE
• Screen patients for potential symptoms of COVID-19 on entry to facility
• Provide separate entrance for non-COVID patients, minimize waiting times, keep patient volumes low, maintain social distancing
• Maximize telehealth
• Continuously monitor for any increase in COVID-19 cases
Telehealth

- CMS recently approved Telehealth for Shared Decision Making for LCS (G0296)
- Temporary waiver of need for counseling to be face-to-face
- If patient does not have computer video access, telehealth visit can be done over the phone
What we can do now

• Investigate or implement Telehealth visits for Shared Decision Making
• Identify patients who are overdue for annual LCS and follow-up CTs
• Prioritize overdue follow-up CTs for LungRADS 3 & 4
• Communicate with referring providers and patients and provide reassurance that processes are in place for safe and effective care
• Offer screening appointments evenings and weekends to increase access and minimize contact with other patients
• During scheduling, tell patients what to expect
• Streamline arrival and time in facility so quick “in and out”
Summary

• Screening rates have plummeted during the pandemic
• Timeline for re-opening facilities for routine care and screening will depend on local circumstances
• Guidelines for resumption of screening are available from the ACR and CMS
• Telehealth is now approved for Shared Decision Making in LCS and is strongly encouraged
• Communication with referring providers and patients will be especially important to ensure safe and effective care
Management of Lung Nodules and Lung Cancer Screening During the COVID-19 Pandemic
Consensus Statement

• **Background**: The risks from potential exposure to COVID-19, and resource reallocation that has occurred to combat the pandemic, have altered the balance of benefits and harms that informed current (pre-COVID-19) guideline recommendations for lung cancer screening and lung nodule evaluation.

• **Methods**: An expert panel of 24 members, including pulmonologists (17), thoracic radiologists (5), and thoracic surgeons (2) was formed.

 • The panel was provided with an overview of current evidence and was convened by video teleconference to discuss then vote on statements related to 12 common clinical scenarios.

• **Results**: Twelve statements related to baseline and annual lung cancer screening (2), surveillance of a previously detected lung nodule (5), evaluation of intermediate and high risk lung nodules (4), and management of clinical stage I non-small cell lung cancer (1) were developed and modified.
Lung Nodule Management

• **Goal:** Expedite the treatment of malignant nodules and minimize the harms to those with benign nodules.

• **Risks of testing versus risks of waiting**
 - Probability of malignancy, nature of the possible malignancy, evaluation options, comorbidities, fitness, patient values
 - Size, morphology, density, location, growth, clinical risk factors (age, smoking history, emphysema)

• **Risks of testing during COVID pandemic**
 - To patient, to healthcare team, to other patients
 - Resource constraints
Lung Nodule Evaluation – Solid Nodules

<table>
<thead>
<tr>
<th>Size (mm³)</th>
<th>CHEST</th>
<th>Fleischner</th>
<th>Lung-RADS</th>
<th>BTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 mm (100)</td>
<td>LR - ≤ 4 mm optional follow-up</td>
<td>LR – no follow-up</td>
<td>RTAS (category 2)</td>
<td>< 5 mm – no follow-up</td>
</tr>
<tr>
<td></td>
<td>> 4 – 6 mm, 12-month follow-up</td>
<td>HR – optional 12 months</td>
<td>For new 4-6 mm – 6 months (category 3)</td>
<td>5-6 mm – 12 months, 24 months if</td>
</tr>
<tr>
<td></td>
<td>HR - ≤ 4 mm 12-month follow-up</td>
<td></td>
<td></td>
<td>stable on diameter, discharge if</td>
</tr>
<tr>
<td></td>
<td>> 4 – 6 mm, 6-12-month follow-up</td>
<td></td>
<td></td>
<td>stable volume, option for further</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>surveillance or evaluation if > 400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>day VDT, evaluate if ≤ 400 day VDT</td>
</tr>
<tr>
<td>≥ 6 - < 8 mm (100-250)</td>
<td>LR – 6-12-month follow-up</td>
<td>LR – 6-12 months (3-6 months if multiple), then consider at 18-24 months</td>
<td>6 months (category 3)</td>
<td>3 months then 12 months after</td>
</tr>
<tr>
<td></td>
<td>HR – 3-6-month follow-up</td>
<td>HR – 6-12 months (3-6 months if multiple), then 18-24 months</td>
<td>3 months if new (category 4A)</td>
<td>baseline if VDT > 400 days, then as</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 6 mm</td>
</tr>
<tr>
<td>≥ 8 mm (250)</td>
<td>< 5% risk then surveillance in 3 months</td>
<td>Consider CT at 3 months, PET/CT, or tissue sampling</td>
<td>For 8-15 mm 3 months (category 4A)</td>
<td>Assess using Brock model</td>
</tr>
<tr>
<td></td>
<td>5-65% risk then PET/CT scan +/- non-surgical biopsy</td>
<td></td>
<td>≥ 15, ≥ 8 and new or growing – further evaluation (category 4B)</td>
<td>< 10% risk then surveillance as above</td>
</tr>
<tr>
<td></td>
<td>> 65% risk then proceed directly to treatment after staging and physiology testing</td>
<td></td>
<td></td>
<td>> 10% risk then PET/CT and Herder model (< 10% surveillance, > 70% consider resection)</td>
</tr>
</tbody>
</table>
Lung Nodule Evaluation – Subsolid

<table>
<thead>
<tr>
<th>CHEST</th>
<th>Fleischner</th>
<th>Lung-RADS</th>
<th>BTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 mm
GG – No routine follow-up</td>
<td>< 6 mm
GG - No routine follow-up
PS – No routine follow-up
Multiple – CT at 3-6 months, consider CT at 2 and 4 years if stable</td>
<td>GG < 30 mm or any size and unchanged – RTAS (category 2)
PS < 6 mm – baseline RTAS (category 2), new 6-month CT (category 3)</td>
<td>< 5 mm
No follow-up</td>
</tr>
<tr>
<td>≥ 6 mm
GG – 12 months then annual through 3 years
PS
≤ 8 mm solid – 3, 12, and 24 months then annual months then annual until 5 years
≥ 8 mm solid – 3 months, further evaluation if persists</td>
<td>≥ 6 mm
GG – 6-12 months then q2 years until 5 years
PS – 3-6 months then annual until 5 years
Multiple – 3-6 months then based on most suspicious nodule</td>
<td>GG - > 30 mm or new – 6-month CT (category 3)
PS – solid component < 6 mm – 6-month CT (category 3); solid component ≥ 6-8 mm or new or growing and < 4 mm – 3-month CT (category 4A); solid component ≥ 8mm or new or growing and ≥ 4 mm – further evaluation (category 4B)</td>
<td>≥ 5 mm - 3 month CT growth or altered morphology favors resection, stable – use Brock model, < 10% then CT at 1, 2, 4 years from baseline, > 10% or concerning morphology – surveillance, biopsy or resection</td>
</tr>
</tbody>
</table>
Scenario 3 - A patient is due now for a surveillance CT scan of the chest for an incidentally detected solid nodule, < 8 mm in average diameter.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to delay the surveillance CT scan for approximately 3-6 months.

Note:

- Current (pre-COVID) recommendations suggest a surveillance CT scan 6-12 months after the nodule was identified based on nodule size, clinical and imaging features.
- Solid nodules < 8 mm in average diameter typically have a probability of malignancy of < 2%.
- Factors that may influence the decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Scenario 5 – A patient is due now for a surveillance chest CT scan for an incidentally detected pure ground glass nodule.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to delay surveillance of any size pure ground glass nodule for approximately 3 to 6 months.

Note:

• Current (pre-COVID) recommendations suggest surveillance of most pure ground glass nodules (except for solitary nodules <6 mm in diameter) at varying intervals based on the number of nodules and nodule size.

• Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Surveillance of a Previously Detected Lung Nodule

Scenario 6 – A patient is due now for a surveillance chest CT scan for an incidentally (or screening) detected part-solid lung nodule with the solid component 6 mm to 8 mm in diameter.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to delay surveillance for approximately 3 to 6 months.

Note:

- Current (pre-COVID) recommendations suggest a surveillance CT scan 3 months after the nodule was identified.
- This scenario corresponds to a Lung-RADS category 4A screening-detected nodule.
- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Surveillance of a Previously Detected Lung Nodule

Scenario 7 - A patient is due now for a 3-month surveillance CT scan of the chest for an incidentally detected solid nodule, ≥ 8 mm in average diameter (or a Lung-RADS category 4 screening-detected lung nodule). You estimate the probability of malignancy to be < 10%.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to delay the surveillance CT scan for approximately 3-6 months.

Note:

- Current (pre-COVID) recommendations suggest a surveillance CT scan 3 months after the nodule was identified.

- Factors that may influence the decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Scenario 8 – A patient presents for evaluation of an incidentally detected solid nodule ≥ 8 mm in diameter (or a Lung-RADS category 4 screening-detected lung nodule). You estimate the probability of malignancy to be 10 - 25%.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to re-evaluate the patient with a chest CT scan in approximately 3-6 months.

Note:

• Current (pre-COVID) recommendations suggest further evaluation with PET/CT imaging and/or a non-surgical biopsy for the patient described.

• Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Evaluation of Intermediate and High Risk Lung Nodules

Scenario 9 – A patient presents for evaluation of an incidentally (or screening-) detected part-solid lung nodule with the solid component ≥ 8 mm in diameter.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to monitor the nodule with a chest CT scan in approximately 3-6 months.

Note:

- Current recommendations vary, suggesting further evaluation with PET/CT imaging, a non-surgical biopsy, or surveillance with a short interval chest CT scan if the nodule is felt to be inflammatory.
- This scenario corresponds to a Lung-RADS category 4B screening-detected nodule.
- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Scenario 10 – A patient presents for evaluation of an incidentally detected solid nodule ≥ 8 mm in diameter (or a Lung-RADS category 4 screening-detected lung nodule). You estimate the probability of malignancy to be 65 - 85%.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer procedures and surgery when reasonable, it is acceptable to evaluate the patient with a PET scan and/or non-surgical biopsy to insure there is a need to proceed to treatment (surgical resection or stereotactic radiotherapy).

Note:

• Current (pre-COVID) recommendations suggest that you consider proceeding directly to surgical resection (if medically fit) for the patient described. PET imaging would be suggested as part of an acceptable staging evaluation.

• For solid nodules ≥ 8 mm in diameter (or a Lung-RADS category 4 screening-detected lung nodule) with a probability of malignancy 25-65% current (pre-COVID) recommendations suggest further evaluation with a PET scan and/or non-surgical biopsy. We are not suggesting a change for this group.

• Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.

• If the patient happens to have prior imaging, and there is evidence that the nodule is a slow growing potentially indolent cancer, one may consider delaying the evaluation.
Evaluation of Intermediate and High Risk Lung Nodules

Scenario 11 – A patient presents for evaluation of an incidentally detected solid nodule ≥ 8 mm in diameter (or a Lung-RADS category 4 screening-detected lung nodule). You estimate the probability of malignancy to be > 85%.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to minimize exposure to the healthcare environment, it is acceptable to avoid further diagnostic testing and proceed to an empiric treatment decision (i.e. surgical resection or stereotactic radiotherapy).

Note:

- This statement is in keeping with current (pre-COVID) recommendations for management of the patient described. We are not suggesting a change for this group.

- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.

- Pre-treatment physiologic testing and an appropriate staging evaluation should be performed.

- If the patient happens to have prior imaging, and there is evidence that the nodule is a slow growing potentially indolent cancer, one may consider delaying treatment.
Individualize Decisions

• The authors of the consensus statement recognize that our statements should not be interpreted as one-size fits all, and that what is appropriate now will change over time.

• Application of a general assessment to an individual patient requires the clinical judgment of the management team.

• In addition to considering patient factors and values, we attempted to highlight that local factors, such as the prevalence of COVID in the community, the availability of rapid COVID testing, the adequacy of resources (personnel, imaging equipment, personal protective equipment), local policies, and the presence of other care delivery sites that are less impacted by COVID, should be considered when making individual decisions.
COVID-19

Lung Cancer Screening

May 7, 2020

Ella A Kazerooni MD MS
ellakaz@umich.edu

Professor of Radiology & Internal Medicine
Department of Radiology University of Michigan Medical School
Associate Chief Clinical Officer for Diagnostics & Clinical Information Management
University of Michigan Medical Group
COVID-19 & Lung Cancer Screening

• Performing and managing lung cancer screening results
• ACR LCSR new data fields
Management of Lung Nodules and Lung Cancer Screening During the COVID-19 Pandemic: CHEST Expert Panel Report

Peter J. Mazzone, MD, MPH, FCCP1,4*, Michael K. Gould, MD, FCCP2, Douglas A. Arenberg, MD, FCCP3, Alexander C. Chen, MD4, Humberto K. Choi, MD, FCCP5, Frank C. Detterbeck, MD, FCCP6, Farhood Farjah, MD, MPH7, Kwun M. Fong, MD8, Jonathan M. Iaccarino, MD9, Samuel M. Janes, PhD10, Jeffrey P. Kanne, MD, FCCP11, Ella A. Kazerooni, MD12, Heber MacMahon, MB, BCh13, David P. Naidich, MD, FCCP14, Charles A. Powell, MD, FCCP15, Suhail Raoof, MD, Master FCCP16, M. Patricia Rivera, MD, FCCP, ATS17, Nichole T. Tanner, MD, MSCR FCCP18, Lynn K. Tanoue, MD, FCCP19, Alain Tremblay, MD, FCCP20, Anil Vachani, MD, MS, FCCP21, Charles S. White, MD22, Renda Soylemez Wiener, MD, MPH23, Gerard A. Silvestri, MD, MS, FCCP24

DOI: https://doi.org/10.1016/j.chest.2020.04.020

https://journal.chestnet.org/article/S0012-3692(20)30758-3/fulltext
Lung Cancer Screening: Scenario 1

Lung Cancer Screening – Baseline and Annual

Scenario 1 – An individual who meets eligibility criteria is referred to your lung cancer screening program.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is suggested that the initiation of screening be delayed.

Note:

- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.

Scenario 2 – An individual who meets eligibility criteria is due for their repeat annual chest CT screening exam (Lung-RADS category 1 or 2 on their prior screening exam).

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is suggested that the annual screening exam be delayed.

Note:

- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Lung Cancer Screening: Scenario 2

Scenario 2 – An individual who meets eligibility criteria is due for their repeat annual chest CT screening exam (Lung-RADS category 1 or 2 on their prior screening exam).

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is suggested that the annual screening exam be delayed.

Note:

- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.

https://journal.chestnet.org/article/S0012-3692(20)30758-3/fulltext
Lung Cancer Screening: Scenario 4 - LungRADS 3

Scenario 4 – A patient is due now for a surveillance chest CT scan for evaluation of a screening-detected lung nodule, Lung-RADS category 3.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to delay surveillance for approximately 3-6 months.

Note:

- Current (pre-COVID) recommendations suggest a surveillance chest CT scan 6 months after the nodule was identified. (7)
- Lung-RADS category 3 nodules are considered to have a 1-2% probability of malignancy. (7)
- Lung-RADS category 3 includes solid nodules ≥ 6 mm - < 8 mm in diameter, part-solid nodules with the solid component < 6 mm in diameter, new solid nodules 4 - <6 mm in diameter, new part-solid nodules <5 mm in diameter, and pure ground glass nodules ≥ 30 mm. (7)
- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.

https://www.jacr.org/article/S1546-1440(20)30420-8/pdf
Scenario 7 - A patient is due now for a 3-month surveillance CT scan of the chest for an incidentally detected solid nodule, ≥ 8 mm in average diameter (or a Lung-RADS category 4 screening-detected lung nodule). You estimate the probability of malignancy to be < 10%.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to delay the surveillance CT scan for approximately 3-6 months.

Note:

- Current (pre-COVID) recommendations suggest a surveillance CT scan 3 months after the nodule was identified. (4,6,7)
- Factors that may influence the decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Scenario 8 – A patient presents for evaluation of an incidentally detected solid nodule ≥ 8 mm in diameter (or a Lung-RADS category 4 screening-detected lung nodule). You estimate the probability of malignancy to be 10 - 25%.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer non-urgent care, it is acceptable to re-evaluate the patient with a chest CT scan in approximately 3-6 months.

Note:

- Current (pre-COVID) recommendations suggest further evaluation with PET/CT imaging and/or a non-surgical biopsy for the patient described. (4,6,7)
- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
Scenario 10 – A patient presents for evaluation of an incidentally detected solid nodule ≥ 8 mm in diameter (or a Lung-RADS category 4 screening-detected lung nodule). You estimate the probability of malignancy to be 65 - 85%.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to defer procedures and surgery when reasonable, it is acceptable to evaluate the patient with a PET scan and/or non-surgical biopsy to insure there is a need to proceed to treatment (surgical resection or stereotactic radiotherapy).

Note:

- Current (pre-COVID) recommendations suggest that you consider proceeding directly to surgical resection (if medically fit) for the patient described. PET imaging would be suggested as part of an acceptable staging evaluation. (4,6)

- For solid nodules ≥ 8 mm in diameter (or a Lung-RADS category 4 screening-detected lung nodule) with a probability of malignancy 25-65% current (pre-COVID) recommendations suggest further evaluation with a PET scan and/or non-surgical biopsy. We are not suggesting a change for this group. (4,6,7)

- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.

- If the patient happens to have prior imaging, and there is evidence that the nodule is a slow growing potentially indolent cancer, one may consider delaying the evaluation.

https://www.jacr.org/article/S1546-1440(20)30420-8/pdf
Scenario 11 – A patient presents for evaluation of an incidentally detected solid nodule ≥ 8 mm in diameter (or a Lung-RADS category 4 screening-detected lung nodule). You estimate the probability of malignancy to be > 85%.

Consensus statement: During the COVID pandemic, consistent with CDC guidance to minimize exposure to the healthcare environment, it is acceptable to avoid further diagnostic testing and proceed to an empiric treatment decision (i.e. surgical resection or stereotactic radiotherapy).

Note:

- This statement is in keeping with current (pre-COVID) recommendations for management of the patient described. (4,6) We are not suggesting a change for this group.
- Factors that may influence this decision include COVID penetrance in the community and hospital, availability of rapid COVID testing, availability of resources, patient values, and comorbid conditions.
- Pre-treatment physiologic testing and an appropriate staging evaluation should be performed.
- If the patient happens to have prior imaging, and there is evidence that the nodule is a slow growing potentially indolent cancer, one may consider delaying treatment.

https://journal.chestnet.org/article/S0012-3692(20)30758-3/fulltext
New ACR LCSR Voluntary Data Fields

• Voluntary elements were added to three of the ACR registries (CTC, NMD, LCSR) to identify the impact COVID may/may not be having on screening due to postponing non-essential procedure to indicate if the exam was delayed, when was it originally scheduled, what was the delay reason and if the patient was diagnosed with COVID

• The fields are all optional and may provide an opportunity to identify any direct or indirect impact COVID may be having on screening and long-term cancer detection
LUNG CANCER EARLY DETECTION AND MANAGEMENT DURING THE CORONAVIRUS PANDEMIC

Douglas E. Wood, MD, FACS, FRCSEd
The Henry N. Harkins Professor and Chair
Department of Surgery
University of Washington
There was consensus that during the COVID-19 pandemic it is appropriate to defer enrollment in lung cancer screening and modify the evaluation of lung nodules due to the added risks from potential exposure and the need for resource reallocation. There are multiple local, regional, and patient related factors that should be considered when applying these statements to individual patient care.
Screening initiation and continuation – “delay”
Lung nodule management – “acceptable to delay”

“Acceptable to delay” ≠ should delay
 Interpretation of payers?
 Interpretation of hospital administrators?
 Interpretation of PCPs and patients?
Highly variable Covid-19 impact on health care resources
Uncertainty about length of pandemic
 Delayed care still needs to occur...sometime
World

Covid-19 Pandemic Likely to Last Two Years, Report Says

By John Lauerman
May 1, 2020, 1:11 AM PDT

Pressing Issues

1. Because of a longer incubation period, more asymptomatic spread, and a higher R_0, COVID-19 appears to spread more easily than flu.
2. A higher R_0 means more people will need to get infected and become immune before the pandemic can end.
3. Based on the most recent flu pandemics, this outbreak will likely last 18 to 24 months.
4. It likely won’t be halted until 60% to 70% of the population is immune.
5. Depending on control measures and other factors, cases may come in waves of different heights (with high waves signaling major impact) and in different intervals. We present 3 possibilities.
90-95% decrease in screening
Three months of COVID-19 may mean 80,000 missed cancer diagnoses

Publish date: May 4, 2020
By Richard Franki

Pandemic effect: Missed cancer diagnoses

Estimates of missed or delayed diagnoses if current low levels of testing continue for the entire 3 months ending June 5.

Note: Estimates of diagnostics modeled from relevant tumor epidemiology sources. Three-month period ending June 5 compared with baseline month of February 2020.

Source: IQVIA Institute for Human Data Science
Institute for Health Metrics and Evaluation
United States

April 5

Resources needed for COVID-19 patients on peak date

<table>
<thead>
<tr>
<th>All beds needed</th>
<th>Bed shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>140,823 beds</td>
<td>36,654 beds</td>
</tr>
</tbody>
</table>

ICU beds needed

<table>
<thead>
<tr>
<th>ICU bed shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>29,210 beds</td>
</tr>
<tr>
<td>16,323 beds</td>
</tr>
</tbody>
</table>

Invasive ventilators needed

24,828 ventilators

May 2

Resources needed for COVID-19 patients on April 19

<table>
<thead>
<tr>
<th>All beds needed</th>
<th>Bed shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>61,373 beds</td>
<td>2,877 beds</td>
</tr>
</tbody>
</table>

ICU beds needed

<table>
<thead>
<tr>
<th>ICU bed shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,618 beds</td>
</tr>
<tr>
<td>8,778 beds</td>
</tr>
</tbody>
</table>

Invasive ventilators needed

16,966 ventilators
April 5

Invasive ventilators needed
5,664 ventilators

All beds needed 25,486 beds
All beds available 13,010 beds
Bed shortage 12,476 beds

ICU beds needed 6,664 beds
ICU beds available 718 beds
ICU bed shortage 5,946 beds

May 2

Invasive ventilators needed
5,853 ventilators

All beds needed 19,952 beds
All beds available 13,011 beds
Bed shortage 6,941 beds

ICU beds needed 6,225 beds
ICU beds available 718 beds
ICU bed shortage 5,507 beds
April 5

Resources needed for COVID-19 patients on peak date

- All beds needed: 972 beds
- ICU beds needed: 185 beds
- Invasive ventilators needed: 157 ventilators

May 2

Resources needed for COVID-19 patients on April 5

- All beds needed: 924 beds
- ICU beds needed: 254 beds
- Invasive ventilators needed: 232 ventilators
Covid-19 Deferral of Elective Surgery

- March 13 – American College of Surgeons
- March 14 – Surgeon General
- March 16 – Washington State
- March 18 – CMS

Create acute and ICU capacity
Preserve HCW workforce
Preserve PPE
Covid-19 Deferral of Elective Surgery

“Elective” surgery ≠ non-essential surgery

Surgery indications to preserve life, prevent disability, alleviate pain, restore function, improve QOL
Emergent surgery – within hours
Urgent surgery – within days to weeks
Elective surgery (medically necessary)
Elective surgery (medically non essential)
Medically Necessary, Time-Sensitive Procedures: Scoring System to Ethically and Efficiently Manage Resource Scarcity and Provider Risk During the COVID-19 Pandemic

Vivek N. Prachand, MD, FACS,* Ross Milner, MD, FACS, Peter Angelos, MD, FACS, Mitchell C. Posner, MD, FACS, John J. Fung, MD, FACS, Nishant Agrawal, MD, FACS, Valluyan Jeevanandam, MD, FACS, and Jeffrey B. Matthews, MD, FACS
Continuum of Conventional, Contingency, and Crisis Capacity

Conventional capacity: The spaces, staff, and supplies used are consistent with daily practices within the institution.

Contingency capacity: The spaces, staff, and supplies used are not consistent with daily practices, but maintain or have minimal impact on usual patient care practices.

Crisis capacity: Adaptive spaces, staff, and supplies are not consistent with usual standards of care, but provide sufficiency of care in the setting of a catastrophic disaster (i.e., provide the best possible care to patients given the circumstances and resources available).
Surge Definitions

<table>
<thead>
<tr>
<th>Phase 0</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plenty of capacity. Lower than the pre-Covid days</td>
<td>90% full</td>
<td>Surging in contingency space (boarding)</td>
<td>Crisis capacity</td>
</tr>
</tbody>
</table>

Staff

<table>
<thead>
<tr>
<th>Phase 0</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Too much staff; not enough work</td>
<td>All staffing needs met; may need OT or floating</td>
<td>Entity resources exhausted; may need Labor Pool</td>
<td>Resources insufficient. Crisis standards</td>
</tr>
</tbody>
</table>
Anticipated Recovery Criteria

• Decline in new cases, hospitalizations, and deaths
• Testing capacity
• Contact tracing
• Sufficient PPE
• Maintain ability to respond to resurgence

When will patients feel safe re-entering healthcare?
Cases of COVID-19 Hospitalization by Date of First Admission

Effective Reproductive Rate for King Co.

- Mobility-based regression model with SISI effect (4/10 report)
- Model extrapolation from the 4/10 report
- R_e estimates based on WDRS compiled on 4/19 (this report)
Health Care System Capacity

Washington State

State PPE Procurement
How the coronavirus is delaying life-altering surgeries

‘Elective’ Surgery Saves Lives
Temporary bans prevent treatment for cancer, heart disease, cataracts and other serious ailments.
Cardiothoracic Surgery in the COVID Crisis: Stratification of Thoracic Oncology Surgery

Weekly Webinar Series Part 6: Managing Lung Cancer Patients Through the COVID-19 Pandemic

The largest association was seen in pancreas and non-small cell lung cancer. Every week of increased TTI was associated with increased risk of death by an estimated 3.2% and 1.6% in stage I and II non-small cell lung cancer, respectively.

The most substantial associations with worsened mortality were seen in patients with lung and pancreas cancers. Five-year overall survival for stage I NSCLC was 56% (±0.2) for TTI 6wks compared to 43% (±0.2) for TTI > 6 wks.

When analysis was restricted to patients receiving surgery as first-line therapy in patients with lung cancer, the statistical estimators demonstrated stronger effect sizes.
Prolonged TTI of over 6 weeks was associated with a 13% absolute increase in 5-year mortality in stage I NSCLC.
Each week’s delay in lung cancer surgery risks tumor’s spread

Each week that a patient with a new diagnosis of early lung cancer awaits surgery significantly increases the risk for tumor growth, spread and "upstaging," according to an analysis of thousands of patients.

Patients with stage I non-small cell lung cancer (NSCLC) had a 4% increased risk of upstaging generally (to stage II, III, or IV) each week until their surgery. Their risk of upstaging to IIIA disease was 1.3% per week of surgery delay. The findings were reported at the American Association for Thoracic Surgery meeting.

Among 52,000 stage I NSCLC patients analyzed, about a quarter underwent resection within one week of lung cancer diagnosis. However, more than 20% waited longer than eight weeks for surgery, and about one in 11 waited longer than 12 weeks.

Short-Term Recommendations for Non-Small Cell Lung Cancer Management During the COVID-19 Pandemic

Curative Intent Setting

- If institutional resources (ie, ventilators, staff, rooms) are available, curative-intent procedures should continue as planned.
- Preoperative testing of patients for COVID-19 should be performed if available.

Thoracic Surgery

Stage I – Stage II

- Patients with a pure ground-glass opacity (no solid component) can usually be deferred for 6 months or more.
- Patients with a clinical stage I lepidic adenocarcinoma (ground-glass opacity with small solid component) can usually be deferred for 3–6 months.
- Patients with clinical stage IA1 solid tumors can usually be deferred for 2–3 months.
Short-Term Recommendations for Non-Small Cell Lung Cancer Management During the COVID-19 Pandemic

- Patients with clinical stage IA2 to stage IIB should be considered urgent for purposes of surgical planning, proceed with surgical evaluation and planning, and proceed to surgery within 1 month if feasible with local hospital resources.
- For patients with surgery recommended as guideline-concordant care, surgery continues to be preferred over non-surgical therapy unless resource restrictions are severe and of indeterminate duration.
- In the context of minimizing procedures and potential viral exposure in patients with no evidence of nodal involvement on recent PET and CT, it is acceptable to omit invasive mediastinal staging. Mediastinoscopy can be considered as an alternative to endobronchial ultrasound (EBUS).
- Patients with strong clinical evidence or biopsy-proven N1 disease can have consideration of primary surgery (invasive mediastinal staging recommended) followed by adjuvant chemotherapy versus induction chemotherapy followed by surgery as dictated by local resources, multidisciplinary planning, and patient preference.

https://www.nccn.org/covid-19/pdf/COVID_NSCLC.pdf
Cancer Is Still Beating Us —We Need a New Start

Most patients continue to face excruciating, costly and ineffective treatments. It’s time to shift our focus from fighting the disease in its last stages to finding the very first cells.
GO_2 Foundation—Your “Go To” Resource!

Patient Education

Screening and Care—Centers of Excellence Virtual Summit: Stay Tuned!

screening@go2foundation.org

VIRTUAL LUNG CANCER VOICES SUMMIT

June 15-16, 2020
We gratefully acknowledge our sponsors:

• AstraZeneca
• Bristol Myers Squibb Foundation
• Eli Lilly and Company